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The three~-dimensional problem of waves on the surface of a viscous fluid,
caused by initlal disturbances, is consldered. Sretensklil considered an
analogous problem for the plane case in [1], and for the three-dimensional
case in [2). In contrast to.[2], wherein approximate formulas are given for
the shape of the free surface for initial disturbances of just the delta~
function type, without estimates of the degree of accuracy of the cbtailned
approximation, approximate asymptotic formulas for arbitrary initlal disturb-
ances are obtalned herein and an estimate of the degree of accuracy of the
obtained approximation is given.

Moreover, in the case of concentrated initlal disturbances of the delta~
function type, formulas analogous to those of Kochin [3] for the solution of
the analogous problem for an ideal fluid are obtained for the shape of the
free surface.

l. At the initial time ¢ = O let a viscous incompressible fluid occu~
pying the half-space z < O be at rest, and let its free surface have the
form { (x,y, 0) = Lz, y). Let us pose the problem of finding the form of the
free fluid surface at any time ¢ > O . Assuming the motions to be slow, we
obtain the system of hydrodynamic equations in the form

puy = — p, -+ pAy, pvtzwpy-}-pAv, pw; = — p, — pg + plw
ux+vy+wz=0 (1.1)
with the initial conditions
Uu=v=w=0, =20 (x,y) for t =0 (1.2)
and the boundary conditions
Pan = Ppe, = Pz, = 0, Li=w for 2= 1.3)

Here =+, and +r, are two orthogonal directions., ILet us introduce the
function #{x, y, 2, t) by means of the equality

p=pp— gpz (1.4)

Then, since the motions are slight, to first order of accuracy inclusively,
the boundary conditions (1.3) may be written as follows:

gC:w--vaz’ €1=w’ uz+wx:0, vz+wyx0 for z =20 (1.5)
Taking account of (1.3), the system of equations (1.1) then becomes
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1338 L.V. Cherkcoov

np=—wb,+vAu, v, =—), FvAv, w,—=—V, tvAw, u, + v, +w, =0 (1.0)

Let us apply the Laplace transform in the time ¢ and the Fourier trans-
form in the variables x and y to (1.6) and the boundary conditions (1.5).
Then, taking account of the initial conditions {(1.2), we obtain the following

system of equations 1.7
alU = — im¥ + v [— (m? + n¥)U + Uu], aV = — in¥ + v [— (m?+ )V +sz]
aW = — ¥, +v[—(m24-n)lV + W, i(mU +nV) + W, =0

with boundary conditions
al¥ —2vIV, — gZy] — gV =0, imW +U,=0, inW+V, =0 tor z2=20 (1.8)

Here U,V,W,V¥,Z, are the transforms of the functions u, v,w,¥, Lo
are functions of z, a, m, n, where o 1s the Laplace transform parameter,
and m and n are Fourier transform parameters in x and jp , respectively.
From Equations (1.7) we find

¥Y,=m+ nf)¥
Hence, by satisfying the condition % - O as 2z -—o we have
Y = Adexp(z V mE 4 n2) (1.9)

Here that value 1is taken of the square root for which the real part is
positive.

Taking account of {1.9) and the condition ¢ , v , W - O a8 z = — = ,
we obtain from the system (1.7)

U = B exp (:bv™"%) ++ Byexp (zr), By = — ima1A4 b=Va+t v
V = Cexp (:bv™ %) 4- Crexp (zr),  C1= —ina~l4, C=(ibD—mB)n™1 ~ (4.10)
W = Dexp (:bv"/;') -+ Dyexp(zr), Dy =—ra24, r=V m? ~+ n2

Here A, B, D are arbitrary functions of a , m , n . Satisfying the
boundary conditions (1.8), we obtain the following system to determine 4,

B, D )
A (a2 4 2var? 4 gr) — Da (2v/%ba + g) = a%Z,

— 2imrv"2A + bimav'2D + abB = 0 (1.11)
— 2in?rvA + iva (b2 4 n2v) D — mav/%HB = 0

Applying the integral transformation to the second eguation of (1.5), we
have a(Z —2,) = ¥ for z = O . Hence, we find from (1.10)

Z = Z, + ot (D — Aa-1r) (1.12)
Substituting 4 and p the solutions of (1.11), here, we obtain
Z = Zy (1 — grAy™Y), Ay = a? + gr + 4dvar? — 48 + 2virt

Introducing the varisbles m — krcos8, n = krsin 0, a = oa;, 2 = R cos 7,
y=Rsiny and applyi the Mellin formula and the inverse Fouriler
transform, we obtain from {1.12)

ot s
Yeyt) = g [m+ €7 (N2 )] (1.13)
2no00 1 8-+ioco
M = OS OS Zo(r, 0)%;(r, 1, e) exp (irRy cos (6 — 1)) rdrdo, x;= 5— S 9; (@, ) e*lda
8—ico

21t 00
1
Zo= 2—,;§ § to(R, v exp (—irRycos (90— 1)) RaRa =123

0
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o - 4er? —4r3 Vi Fert 4 2672t (o + 4er?) Ag (1 '12)
¢ = —————A , 5 = aAl s @3 = ———-—AAl cont.
A=o2+tdear? 4 r 4 4e?rt, A=A —¢ePA;, A= 4 V a+ er? + 26"

e=vg %3, k=o0%1 R =kR, oc=1 cex?

The expression (1.13) is the exact solution of the formulated problem for
the arbitrary function ¢(, (x,y), relative to which we assume that it admits
of a Fourler transformation in the variables x and y . Hence, Z,(r, 0)
has no singularities in the domain of integration and for r - + o %ends to
zero more rapidly than » !. Let us analyze (1.13) further by assuming
¢« 1 . It can be shown that by neglecting quantities of order &% and
higher, (1.13) may be written as follows:

54

{= _Z_néz—nl (1.14)

For this it 1is evidently necessary to show that n; and n; have a finilte
limit a8 ¢ - O . Using the Vallée-Poussin criterion [4] on uniform conver-
gence of integrals with infinite limits, 1t 1s easy to show that the inte-
grals n, and n, converge uniformly in respect to ¢ , and then we can pass
to the 1limit under the integral sign. Let us evaluate the expression
(#3);—o = %3 which has the form

s+ico -
2r8 S aVa atg
143 (a2 4 r)2 e e
8-—100
By contour integration we find

o0
7 3 A
%? = — 2 Re [i'/' (t - 5—;7:)] r'h 4 Ks, Ky = ‘f{—g m-%_,j,e‘“’ da  (1.45)
* 1]

The last integral 1s expressed in terms of Mayer functlons and has the
form

or'ls ri?
(7

==___ 31
KB - “s/ Gls

-4 )
./u 0, l/l

Since any pair of the numbers b = s/‘, by =0, by = Yy does not differ by
an integer, then the following representation will be valid:

8 3
G (E1,,%, 5) = ’2 11T (b;— 8,) T (1 + b, — a,) ™ x
=1 j=1

><F”u)(iml_bh'—al; 1+bh_ba' 1+bh_d~(; E)

where aq and y take the values 1, 2, 3 upon compliance with the condi-
tions askh, Yskh, 0y, 0;=—"y, & =1/’ Hence, it 18 seen that for r -0,
Xs — as rie, For ¢ >0 and r - o 1t 18 easy to show that_ X, = O

no more rapidly than r!, and therefore for r - o , %~ as r’. On the
basls of (1.13) and (1.15) we have the following representation

5
1’ = 3 By (1.16)
270 %=1
By =t S S @y0 () O)exp [iRrcos (0 — 1] ki V7t drdo, @, =— (4 i)z, (r, 0)
00
o]
By = S Psa(r, O)exp (iRrcos (0 —7) i Vrt]drdd,  gau=—Ya (- i)z, (r, 0)
0

27 co

Y

B; = S S @s (r, 6) exp [iRr cos (0 — 1)] dr d6, s = KsZy(r, 0)
0 0
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Let us assume that for r - , Z,{(r, 8) - O not more slowly than -5
for appropriate constraints on {,(x, y) . Under this condition all the
integrals 5, will converge absolutely. The expression p», , contains the
factor t 1in front of the double integral. This integral may be easily
shown to be a quantity on the order of ¢~! for large ¢ by the method of
statlionary phase. Hence, as ¢ grows »,,p will remain bounded. Thus v,
remains bounded as ¢ -~ O . It is shown completely analogously that n,
will remain bounded as ¢ - O for the same assumptions on the function
2,{r, 8) . Therefore, {1.14) yields an expression for the shape of the free
riuid surface to first degree of accuracy in e , inclusive.

On the basis of the Jordan lemma the integral x, 1s evaluated by using
resldue theorems. Since the equation A = 0 has the roots q,,s=—2er®: t/r,

then 2 4 o2
ka £y ak! k
=— .- —1 1.147
% Elal.-az” (—1) (1.47)
Now (1.14) takes the form
9m oo
st .
L= Ing® S S Zo(r, 8} %1 (r, tyexp [iRr cos (0 )] r dr dB {1.18)

0o 0
Here x,{r, ¢) is given by (1.17). It is easy to verify that the initial
condition ({y,y,0) = {,{x,y) is satisfied.

The first degree of accuracy in ¢ inclusive, the obtained Formula (1.18)
represents the shape c¢f the free surface of the fluid at any time ¢ > 0 ,
th 21.' At the initial time ¢ = O let the free surface of the fluid have

e form
Lolz, 9) = {C"“”R"‘")p' (R<a) (“>0 ) 2.1)
0 {(R>a) \[o==const
In this case

Zo(r, 0) = L™k %9 (), @ () =2Tp + 1) (@) 7 L (@) (2.2)

and the integrals n, and 1, will converge absoclutely for u > 3.25 .
Taking into account that the integral in {118) is the 1imit of the integral

an oo

S S Zo{r, 0)sa (r, t) exp [iRr cos (8 — 1)+ zr} rdr 40
00
as g - =0, let us write the expression for ( as
xR
5‘ 2
£ = gog,%s @ ()2 (r, 1) Jo (FR) & 1 dr @.3)

]

Let us note that the volume ¢ of the initial rise in the fluid 1s evalu-
ated by means of Formula Q = na®l,(t + 1)L To simplify the subsequent cal”
culations let us consider the limiting case when g -~ 0 , {,~ = so that the
quantity ¢ remains invariant {an initial rise of delta-function type). In
this limiting case o{r) equals [2{p + 1)1 and (2.3) takes the form

o0

= ‘2"“:“‘ Q<54g-2 lim \i’(?)) P (8) == S rJp (rR) sy {r, 1) & dr
I>—0 )
¥y == (COS V;S -+ 28)-'/: sin V;t) exp {— 2er%) .4

Expanding the function 4{ec) in a series in the parameter e and being
1imited to the f'irst three terms of the series, we have

P (e) = P (0} + 29 (0) + €2 1/29" (0) + Rs

o«

» B ) = 2+ (_,i)krz’fs (rtFcos Vit — ktF 1YV rsin Vrt] Jo (P R) e¥dr (=0, 4, 2)
0
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Using the expression for the remainder term of the Taylor serles (4], we __
find that R, will be on the order of ¢® . Expanding sin Y'rt and cos ¥V rt
in seriles, we obtain (2.4) as :

oo o]
C = 20 D ()" (g F 208y + detry), (4 = § PRy e ar)
g k=0 0
4 2k o 2%k—1 e
%= @Ry PR Be= ml2k+lAk+3, TR Ak

Taking 1nto acccunt that
Ay = (& 4 Ry HEIT (6 4 2) POy (— 2 (22 + B ™)
PO =V all (k+%)T (=) (2.5)

where T 1s the gamma function, P,,, spherical functions of the first kind,
we find a final expression for the rise ¢

t 12
=2 e [m+ b (F) 1) o= 5
- o ks 2k e _ [(2k 4 1y1a 22841
= BV (=0t B b =T e
204k 1+ 2) [(2k 4 312 22K42 4 (4k 4 1) [(2k + 5)!1ys 22k+1
Oy = @k F 3)! " @k + 3)1

Here ¢t and AR are the initial dimensional quantities. For = O ,
Expression (2.6) agrees wlth the expression for the rise in the fluid obtained
in solving the analogous problem for an ideal fluid [3 and 5%].

The series (2.6) for the y, will converge for any values of w , but they
are convenient for calculations only for small values of w . Kochin [3]
found an expression for the series p, in terms of Bessel functions which 1is
convenlent for calculations for any values of w . This expression is

Ho=3fan V 27y J y — Y V20 Uy dy — Ty J_y) @7

All these functions have tne same argument 2w . Let us now find an
expression for the series p, in terms of Bessel functlons. Thls series may
be represented by an integrai of the form

om
Hy = S F (a0 cost @) cos3 @ dp  (F (z) =2[9 — 622) Jo(z) — (10z — 2% J1(z)])  (2.8)
0

It is easy to verify (2.8) by substituting the series expressions for J,
and J; and then integrating term by term. On the other hand, by using
Formula Yy

Jp. ()7, (z) = % S Jwv (2z cos 0) cos (0 — v) 040 (2.9)
0

known from Bessel-function theory, the integral (2.8) may be expressed, if
M+ v>—1, in terms of Bessel functions as

Hl == 1/2“ Vﬁ [9/4‘11/;]_1/’ + 21/8']1]0 -_ 295/64-’:/‘-/_3/‘ + 5/82-]_1/‘]_3/‘ _
—_ 33/13.,1/‘.]_,/‘ -+ 1/g30 (53.]_1‘,‘]_,/‘ —_ 58],/“’,/‘) —_
— Ueuw? (387, J_y + 33Ty Ty ) + 160 (Jy Sy — Ty J )]
Here all the functions have the same argument iw . Simllarly, an expres-

slon in terms of Bessel functions may be obtained for Ha2 by representing
it as
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dv
e =4V, — 8t _dt_z

Y,m Yo
V= S Fi (2w cos?@) cospdg, Ve=o S Fy (Y cos? @) cos® @ d
0 0
Fy (z) = (225 + 26322 - 150%) J (2) — (25 — 702° - 2522) 7 (x)
and intcpgrating the expressions ¥, and v, , just as (2.8).

3. Let us conduct an asymptotic analysis of (1.18) for large valucs of

P . For this let us write this expression as
4 e 2 M
iR , 0
5=2;—2§S Nt e K arae (3.4)
° 5 0 k=1
AV (=)=t
= (—1)F = e Ly (r, B
fe=(=1) VT o(r, 6)
My=rcos®—1) —E&Vr (=1 E=1tR

Using the known formula >f the method of stationary phase for double
integrals [6], we obtaln the following expression for the rise in fluid for
large F£ for an arbitray initial rise:

2V 252 2 245
L= %ﬁ_ Re l:f (r1, 01) exp (i %—)] exp ( — YS%T;T) (3.2)
iV r -+ 2er2 _ 2
T LA T W

Since the parameter £ enters into Expression M,{(r, §) , 1t should be
small as compared with # , according to which the asymptotic estimate of
the integral (3.1) will be made. Hence, the asymptotic formula (3.2) will
be valild for O <Ci¢<{T, where T 1s a quantity of the order of g lre .
For an initial rise of the form (2.1) concentrated in the neighborhood of
the origin and having the volume ¢ , Expression (3.2) becomes

o girQ gt vgtd . g%
= m(COSW+—4~RTSln AR > (3.3)

Let us note that the limiting value of (3.3) agrees, as v - O , with
the expression for the wave shape which 1s the solution of the analogous
problem for an ideal fluid [5].

To obtain the asymptotic estimate of (3.1) for large values of ¢ , let
us write (3.1) as

2n oo 2
ford t 'tN(,B)
= Zﬂgzs S 2 Fr (r, f))e1 K00 0 gr o
n o k=1
Ny(r, 0)=Ercos(6—71)— V7 (—1)F, = Rt

and, Just as before, we obtain that (3.2) will be valild even for large values
of ¢t for 0<R<R, where p, is a quantity of the order of ¢ .

4, The problem of waves caused by an 1nitial disturbance of the free
surface was considered 1in the previous sections. Let us now consider the
problem of waves caused by an arbltrary pressure pulse applied to a free
surface.

During a very small time interval 1 1let an arbitrary pressure pulse be
applied to the horizontal surface of a viscous fluid at rest, occupying the
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half-space 2z < 0 . Then the projections of the velocitles caused by this

pressure pulse are defined by Formulas .

wp=—p D, vy = —pD = — ptdy, ((D = Spdr) (4.1)
0
Since the pressure pulse is given only on the free surface, then the func=~

tion d>(x,y,z will indeed be known only for z = 0 ., Let ¢tx,y,0) 'F’(x,y).
Since the fluid is incompressible, then aA® = O , and hence the function

1 e _
O == S SS K (m, n)exp [i (mx+ny)+z V. m2 + u2ldmdn
0O
oo
- 1‘ ¢ ;.
(A (m, n) =5 SS F(x, y)exp [— i (mz -+ ny)] dx dy)

satisfying the Laplace equation and the required condition at 2z = O , will
be the desired function. Therefore, the initial velocitles caused by the
pressure pulse r{x,y) are now known in the whole fluid. Since the time
is infinitesimal, and the velocities are finite, we then neglect the dis-
placement of the particles in the time ~» . Taking the instant the pulse
ceases to act as the initlal time, we arrive at the following problem: to
find the solution of the system {(1.1) with the initial conditions y = Uy s
v o= vy, wmw,, £ =0 at ¢ = 0, where u, Uy, are given by (4.1) and
the boundary conditions by (1.3). Applying %hewi.aplace transform in the
time ¢ and the Fourler transform in the variables x and y to (1.6) and
the boundary conditions (1.5), we obtain a system for the transforms if we
take account of the 1nitial conditions
U,, — (P + av)U — imv1¥ = — av-1U,

V= (FF + av )V — invI¥ = — av'}, (4.2)
W, — (P + av )W — v ¥, = — av- 1, i{mU + n¥V) + wW,=0
Here the capital letters denote the transforms of the functions denoted
by the lower case letters above, for this
Uy= — imL, Vo= —inL, Wy=—rL, L= pK (m, n)e*
the boundary conditions (1.5) in the transforms (for z = O) become
gZ =Y —2wW,, eZ=W, Uz+imW=0, V,+ inW =0 (4.3)

Solving the system (4.2) with the boundary conditions (%.3) and then
using the 1inversion formula, we find the expression for the rise in the fluid

97 o0 (4.4)
(= — 2_;’;? [+ ePne + etma], :S S K (r, 8)%;(r, t, &) ¢R7c0s (41 gy g
i 00
% =§?1t_{ S P; (2, netdey (7=1,2,3), ¢ ‘—*—‘;*, P2 =_A%_z;’ Qg = — %
s—ico

The quantities A, Ay Ag, &, &k are given by (1.13). Expression (4.4) 1s
the exact solutlion of the formulated problem for the arbitrary function
F(x,y) relative to which we shall assume that 1t admits of a Fourier trans-
form in the varlables x and y . By the same method as in Section 1, it
may be shown that the expressions for =, and mn, have a finlite limit as
¢ - O under the same constraints on the function r(x,y) as for (,(x,y)
Hence, for,/ e<« 1 , Expression (4.4) may be written with an error of the
order of &’* as

2100

i s . - .
= — 2—7‘5&?5 S g r'K (r, 8) sin Vit exp [iAr cos (B — 1) — 2erit] dr 46 (4.5)
¢ 0
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Thus, to first degree of accuraey in ¢ inclusive, Formula (4.5) ylelds
the shape of waves resulting from the pressure pulse under consideration.

8. Let the function r{x,y) be
I — R (R<a) >0
Fw {0 (R>a) (H == const ) 6

In this case K (r,8) = [a?k%Q (r), where o(r) is given by (2.2) and the
Integrals n, and n, will converge absolutely for u > 3.5 . Taking into
account that the integral in (4.5) 1s the 1imit of the integral

gn o
S g P 1K (r, 0) sin V rtexp [iRr cos (8 — 1) — 2er%t -+ zr]drdd
o0
as z - — 0, let us write Expression for ¢{ as
=3
c5Hq? . - . o,
{=— WS @ (1) Jo (rR)sin V Ftexp [iRr cos (8 — ) — 2er% +zr] r2drdd  (5.2)

9

Let us note that the total magnitude of the pressure pulse g 1is calcu~
lated by means of Formula ¢ = ma®II(p + 1)1, To simplify the subsequent cal-
culations let us consider the limiting case a— 0, Il —» oo so that the quan-
tity ¢ remains invariant. In this limiting case o¢(r) equals [2 (u + 1)]7,

and Expression {5.2) becomes o

4 e
{=— T;I,%ég lim ¥ (e), ¥ (e) :S riJo(rR)sin ¥ rte ¥ gr
Zote e}

0
Expanding \v(e) in a power series In ¢ and limiting ourselves to the
first three terms of the series, we have

P (&) =¥ (0) + &Y’ (0) + V/ae*$" (0) + Rs
oo

¥ ©0) = (—20%§ Pr2KS () sin V T ar
¢

Here R, 1s a quantity of the order of ¢® on the basis of the formula for
the remainder term of the Taylor serles. Expanding sin /7 in series and
taking account of {2.5), we find the following expression for the rise ¢

feel
t 242
b= em [H"'i'%ﬂl’f‘ w H“} Hj= 2} ()0 ©-3)
k=0
o= 5 _ LR U2t Oy = by (2K 3P 193
2B %0 T @A) By =0y (2k+5)2 =123

Here ¢+ and #» are the inivial dimensional variables. The expression
for y = 0 agrees with the expression for the rise in fluid obtained in
solving the analogous problem for an ideal fluld [3]. The obtained series
will converge for any values of w but they are convenient for calculations
only for small w . Kochin [3] found an expression for the series px, in
terms of Bessel functions which 1s convenient for calculations for any w
This expression is

xV2
Hy= :}g (27,7 .y, — 30 Ty Ty, ~ T s T ) — @ Ty oy + T o)

where all the functions have the same argument 2y¢ . Let us now find an
expression for the series #, in terms of Bessel functions. This serles may
be represented by tos
Hy = S F (/0 cos? @) cos @ d@
0
F (z) = 2 [{8—174% |- 25) Jo (z) A (12  62%) Jy ()}

(5.4)



Three-dimcnsional Cauchy-Poisson problem 1345

Using . (2.9), we find the following expression for the integral (5.4) in
terms of Bessel functions:

Hi=13 V 2 [Yaawt (Joy J Ly, + Ty I ) + 2es0® Ty gy, — T_yJ ) —
— 3oq00? (3353, T oy, + TRy T ) + Bwo Ta Ty = Ty T ) —
- 3/2“) (-IOJ]_ — J_‘lz/z) + 329/32-]_1/“71/‘ - 611/21_1]2]

By a similar method we may obtain an expression for the series p, in
terms of Bessel functions by representing it as

Yy
H, = S F1 (120 cos? @) cos ¢ d@ (5.5)
0
F1 (@)= 2 [(— o9 + 962 — 56822 - 225) Jo (z) - (—1525 4 22323 + 1952) J; (2)]
and then integrating (5.5) analogously to (5.4%).
6. Let us carry out an asymptotic analysis of (4.5) for large &
Let us write this expression as

2t 00 2 .
5 .
= g ) ) 2l O exp WA, Dt €
)Y 2

fi(rs 8) = P (r, 0) exp (—2ert) (—1)*

Here ”u(rze) 1s given by (3.1). For large R We obtain the following
asymptotic expression for the rise in fluld due to an arbltrary initial

pulse: ‘/- 2 3¢5
208 2 o (— 225
[= — o Im {f("l, 61) exp (l iR )} exp 8R4 (6.2)
f(r, 0)=rK(r,8), r=Y&Y% OGi=n+tT
Formula (6.2) will be valid for O<C:<7, where 7. is a quantity of
the order of g ko . The quantities ® and ¢ in (6.2) are dimensional.

For an initial pulse of the form (5.1) concentrated in the neighborhood of
the origin, whose total value 1s ¢ , Expression (6.2) vecomes

R qgts . gtz . .ngts
= 8—_1/51191?4 sin 77 exp ( BRT )

Exactly as has been shown in Section 3, we obtain that (6.2) w11l be valid
for large values of ¢ for 0 <R <{R,, where R, 1s a quantity of the order
of ¢t .

The obtained Formulas (6.2) and (6.3) afford a poss<bility of constructing
a pattern of the free surface motion by elementary means at some distance
from the domain of application of the pressure pulse in the mentioned time
range, and also an analogous pattern for large values of time ¢ 1in the
mentioned range of variation of 7 .

(6.3)
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