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The three-dlmensional problem of waves on the SurSaae OS a viscous fluid, 
caused by Initial disturbances, Is cona$dered. Sretenskli considered an 
analogous problem for the plane case In Cl], snd for the, three-dimensional 
case ln [2]. In contrast to.ln], wherein approximate formulas are given Sor 
the shape of the free surface for Mtlal disturbances of just the delta- 
function type, without estimates OS the degree OS accuracy of the obtained 
approximation, approximate asymptotic formulas Sor arbitrary lnltial dlsturb- 
antes are obtained herein and an est%mate of the degree OS accuracy OS the 
obtained approximation Is given. 

Moreover, in the case of concentrated initial disturbances of the delta- 
function type, Sormulas analogous to those OS Kochln [3] for the solution of 
the analogous problem Sor an Ideal Sluid are obtained Sor the shape OS the 
free surface. 

1. At the Initial time $ - 0 let a viscous incompressible fluid occu- 
pying the half-space I < 0 
form 5 (z, Y. 0) = 5" (I, Y). 

be at rest, and let Its A?ee surface have the 
Let us po8e the problem of Sinding the form of the 

free fluid surSace at any time t > 0 . Assudng the motions to be slow, we 
obtain the system of hydrodynamic equations In the form 

PUN = -_p,+~cAu, PVi = -P, -i-YAU, PW< = - P* - pg +pAm 

ux + uy +w, = 0 (1.1) 

with the lnltlal conditions 

u=v=w=o, 5 = CO (G Y) for t--o (1.2) 

and the boundary conditions 

P flfl = P,,, = Pm, = 0% 5t =w exz=g (1.3) 

Here 7% and ~~ are two orthogonal directions. Let us Introduce the 
Sunction +(x, y, s, $) by means of the equality 

P = Pzl,-- gez (1.4) 

Then, since the motions are slight, to first order of accuracy inclusively, 
the boundary conditions (1.3) may be written as Sollows: 

g5 = 9 - 2vw,, St =lC, Uz -I- w* = 0, u* + WV = 0 IorZ=O (1.5) 

Taking account of fl.4), the system of equations (1.1) then becomes 
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1338 L.V. Cherkcws’ 

u1 = - IP,< + VAU, v1 = - III,, -t- VAU, I,‘ 1 : - 11, + vAw, uy + D !I i- u I = 0 (l.G) 

Let us apply the Laplace transform In the time t and the Rourier trana- 
form In the variables x and y to (1.6) and the boundary conditions (1.5). 
Then, taking account of the initial conditions (1.2), we obtain the following 
system of equations (1.7) 

aU= - i,tnY + v [- On2 -I- n2)U + U,,], aV = - inY + v [- (tn2 + n2)V +VzzI 

aW = - ‘Y, + v I-- (m2 -I- 722)W + W,,l, i (mu + nV) + w, = 0 
with boundary conditions 

o [y - 2v1Y, - g%,,] - glv = 0, inZ?V + u, = 0, inw $ v, = 0 for Z = o(1.8) 

Here u, v, w, Y, zo are the transforms of the funCtlOns u, u,w,% 50 
are functions of Z, c, m, n, where c Is the Isplace transform parameter, 

are Fourier transform parameters in x 
Kim zqu%on? (1.7) we find 

and I/ , respectively. 

Hence, by satisfying the 

Here that value Is taken 
positive. 

Y,, = (m2 + n2)Y 

condition * -0 as z---m we have 

Y = A exp (2 ~THZ -/- nz) (1.9) 

of the square root for which the real part Is 

Taking account of (1.9) and the condition II , V , W - 0 88 I - -m t 
we obtain from the Bystem (1.7) 

II = U qsp (zh-‘,‘?) + II1 crp (zr), B1 = - imcc’d b = If/a + vra 

V = Cexp (;Dv-I")+ C1cxp(zr), Cl = - ina-IA, C = (ibD -mB) n-1 (i.iO) 

IV 1 1) csp (zbv+)+ D1 exp(zr), D1 = - ra-‘A, r = fma+na 

Here A, 2, D are arbitrary functlone of c , m , n . 
boundary conditions (1.8), we obtain the following system 
B, D 

Satisfying the 
to determlne A, 

A (a2 -1 2var2 + gr) -Da (2v”*ba + g) = a2gZo 

- 2imrv”:A f bimav’/2D + abB = 0 

- 2in2rvA + iva ib2 + n%) D - mav’iabB = 0 
(1.11) 

Ap21 ing the Integral transformation to the second e uatlon of (1.5), we 
have c 2 - Z,,) - W for I - 0 . f Hence, we find from ? 1.10) 

2 = Z, $ a-l (D - Aa-lr) (1.12) 

Subatltuting ,4 and D the solutions of (l.ll), here, we obtain 

2 = Z,, (1 - grA,-I), A1 = a2 + gr $ 4var2 - 4v’l’b9 -/- 2v2@ 

Introducing the variables m = kr COST, n = kr sing, a = Ua,, z = R cos r, 

the Mellln formula and the Inverse Fourier 
1.12) 

bl1+ 8% Plz + %)I (1.13) 

exco s+im 

llj=$S ( 1 ‘( 5 r, 0 x3 r, t,e) exp(irR1 cos(t3 -7)) rdr de, 1 
xj = 2ni 

s 'pj (a, r) eatda 
0 0 S--i02 

1 
enm 

zo= - 
2n ss 

50 (R, T) exp(- irRlcos(g- 7)) R dRdy (i = 1, 2, 3) 
0 0 
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a+ 4era 
91' A , cpz = 

- 4r9 Jfa + ~92 + 217%4 
aA I 

_(Q +4s+)Aa (;,;$ 
AAl 

. 

A = a2 + 4.sar2 + r + 4.C+$, AI= A - E"'A 21 AZ = 4r3 I/a + era + 2e”V 

E = vg-253, k = czg-1, RI = kR, c= 1 ceK_1 

The expression (1.13) Is the exact solution of the formulated problem for 
the arbitrary function &,(x,y), relative to which we assumeHe;tzt It admits 
of a Fourier transformation In the varlables r and y . 
has no slngularltles In the domain of jntegratlon and for r - 
zero more rapidly than r-l. Let us tilyze (1.13) further by assuming 
041. It can be shown that by neglecting quantities of order E% and 
higher, (1.13) may be written as follows: 

(1.14) 

For this It Is evidently necessary to show that qa and Q have a finite 
limit as c - 0. Using the VallBe-Poussln criterion [4] on uniform conver- 
gence of Integrals with Infinite limits, It Is easy to show that the lnte- 
grals rl? and 'I~ converge uniformly In respect to E , and then we can pass 
to the limit under the integral sign. 
(x3)L,0 = KS07 

kt u8 evaluate the expression 
which has the form 

2r3 
ni 

By contour integration we find 

~~=-2Rs[i'~~(t-_)]~'~+K~, KS = -$f-!&ze-atda (1.15) 

The last Integral Is expressed In terms of Mayer functions 
form 

Since any pair of the numbers b, = ‘i&s b, = 0, b, = ‘1~ does 
an integer, then the following representation will be valid: 

G;(41s3,,4) = i ti r Cbj - b,,) r(i + b,- a,)Ebh~ 
h=l j=l 

x Fat” (1 + b, -a * 11 I+ b, - b,, 1 + bh -d,; 5) 

and has the 

not differ by 

where a and y 
tlonsO aa%h,r=fh,a 

take the yalues 1, 5 3 upon compliance with the condl- 
r,al=- Ia, 5 = Vhrt. Hence, It Is been that for 

KS - 5 
'thanor+ 

fiz.0 and rd" 
no more rapid1 

It Is easy to show that 
f * Q, 

basis of (1.13 3 
and therefore for 

KS+ 0 
o- 0 r"/._ On the 

and (1.15) we have the follow& ze&iientatl% 
6 

qa"= 2 B, (1.16) 
ancn k=1 

RI,9 = t ss 
(pl,Jr, 8)exp [LRrcos (0 - ~1 f i I/;tl dr de, ‘pl,z = - (* i)“‘*r’%,, (r, 0) 

0 0 
anco 

Ba.4 = ss cp3,4 (r, 0) exp [iRr cos (0 - 7) f i v/;t] dr df3, ‘ps,r=- l/2 (f i)"~r"~~&(r, e) 
0 0 m 00 

BS = SS (~5 (r, 0) exp [iRr cos (0 -r)] dr de, (PS = Ka&(r, f3) 
0 0 
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Let us assume that for r - o 
for appropriate constraints on 

z,(r, e) - 0 
C,‘(x, y) 

not more slowly than r-6 
Under this condition all the 

integrals & will converge absolutely. +he expression ~~ 1 contains the 
factor t in front of the double integral. This integral may be easily 
shown to be a quantity on the order of t”l Por large 
stationary phase. 

t by the method of 
Hence, as t grows &,a will remain bounded. Thus n3 

remains bounded as c - 0 . 
will remain bounded as e 

It is shown completely analogously that T)* 
- 0 

2 (f, ef 
for the same assumptions on the function 

Therefore, 
fluid suriace to first degree of accuracy in s 

(1.14) yield8 an e~ressi~~~~~~~e8hape of the free 
I 

On the basis of the Jordan lemma the Integral x1 is evaluated by using 
resldue theorems. 
then 

Since the equation b - 0 has the rootb area - - 2ersI &Jr, 
n 

111 = - (-n)k (1.17) 

Now (1.14) take8 the form 
axca 

Z. (r, e) xl (r, t) exp [iRr COB (0 - r)l t dr rlff (1.18) 

Here s,(t, t) is pi”v “, b (1.17) 
condition C(r,k,O) - c,W 1 

It is easy to verify that the Initial 
s aa&fied. 

The Slret degree of accuracy In e inclusive, the obtained Formula (1.18) 
represents the shape cf the free surface OS the fluid at any time t > 0 . 

P. At 
the Sorm 

In this 

the initial time t - 0 let the Sree surSace of the fluid have 

50 (rt v) t= (EBg(l - R*“-nP I; 2 z; (;@~~*n&) (2.11 

case 

2, (r, 61 = 6&-% 0% QI 09 = 2W +L + 1) (W}-f~+l) Jp+l (ar) (2.2) 

and the integrals n and ns will eonver e absolutely for u > 3.25 . 
Taking into account ?hat the integral in ‘f 1,181 Is the limit of the integral 

BXc0 

ss 29 (r, 6) XI (r, t) exp [iRr cos (8 - r) + 2rJ rdr d@ 
00 

a5 z--O, let u8 write the expreesion for 6 as 

~~~~~~~~~~~~(r, t)~o(r~}~rrdr (2.3) 
0 

I&t us note that the volume 0 of the.lnitial rise in the fluid is evalu- 
ated by means of Formula Q = maa% & -i- 1) -I. To simplify the subsequent cal- 
aulatlons let us oonslder the limiting case when s -+ 0 , Co’ - so that the 
quantity Q remains invariant (an d.nnltial rise of delta-function type). In 
this linritlng Case p(r) equals 12(u + lf]‘” and (2.3) takes the form 

co 

5 = $ Q@Pl& 11, (e), tp (e) = 1 rJ0 (i-R) q (r, t) err dr 
0 

ltl = (cos f 2 + 2era1s sin I/G) exp (- 2w2t) (2.4) 

Expanding the function t(e) 1 n a series in the parameter E and being 
f%mited to the Sirst three erms of the series, we have 

II, (ef = IB (0) i- sV KY+ sa VZZCP” (01 + &i 
00 

* (& (0) = Zkil (-i)“r’” s [rtkcos f;t - ktkmf 1/;sin v;t] $0 (ri9) ezp& (k = 0, 1, 2) 
0 
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Using the expression for the remainder term of the Taylor series [k], we 
find that R3 will be on the order of c3 . Expand% ,sin f/Ft and COS vz 
In series, we obtain (2.4) as 

5-g; (-l)k(ak+ 2s3k+4s2rk), (Ak = ~~'Js(rR)e"dr) 

k=o 0 

‘k = & t2’A 
2k 2k - i 

k+l’ Br = 
_ ---.__12kt1~ 

(2k + I)! k+3, -fk = (2k + i)! t2k+aAk+5 

Taking Into acccunt that 

A k+l = (2% + f&~*(k+2)r (k + 2) Pkyl (- z (2' + RI)-I") 

pkyl (0) = dii [r (k + T2) r (- ‘/rk)l-1 (2.5) 

where r is the gamma function, pk+l spherical functions of the first kind, 
we find a final expression for the rise C 

,=gp?-2[Ho+gHI+(32H2], o=$ 

Hj = 5 (-1)k6kjo2k (i = 0, 1, 2), 6, = 
[ (2k + i)!!]’ 2ak+1 

k=o [2(2k+ i)l] 

6kl = 

2 (4k + 2) [(2k+ 3)!1]'22k+1 
(4k -f 3)! 

6 = 4(4k+ 1)[(2k+5)!!]'2sk+1 
’ ka (4k + 3)! 

Here t and B are the Initial dimensional quantities. For 0 
Expression (2.6) agrees with the expression for the rise In the fllli obialr& 
In solving the analogous problem for an Ideal fluid [3 and 51. 

The series (2.6) for the H, will converge for any values of w but they 
are convenient for calculations only for small values of U' . Kochin [3] 
found an expression for the series ~~ In terms of Bessel functions which is 
convenient for calculations for any values of UI . This expression Is 

Ho = ‘/a x 1/%,,J_,,, - ‘Jszn 1/20 (J:;J,,, - J_,,,J_,,) (2.7) 

All these functions have tne same argument &I . Let us now find an 
expression for the series H In terms of Bessel functions. This series may 
be represented by an lntegra 1 of the form 

'Lx 

HI= 
s 

F (l/20 co@@ co.9 q drp (F (2) = 2 [9 - 69) Jo (T) - (102 - 9) JI @)I) (2.8) 
0 

It IS easy to verify (2.8) by substituting the series expressions for Jo 
am ~~ and then Integrating term by term. 
Formula 

0x-1 the other hand, by using 
I/*:: 

J, (2) J, (z) = ; i J,,+” (22. cos 0) cos (p - v) 8 d0 (2.9) 
0 

known from Bessel-function theory, the Integral (2.8) may be expressed, If 
u+V>-1, In terms of Bessel functions as 

HI = =lzn I'-2 V/~JI,,J_~,, + “IsJIJo - “%J~,,.LI, + %aJ_,,,J_s,, - 

- %~JI,,J_~,, + ':22@ (53J_:;J_,;, - 58J,,, Ja,,) - 

- %d WJa,,J_,,, + 33Jz,,J_s,,) + ‘hao3 CJ,,,Js,, - J_a,,J_,)l 
Here all the functions have the same argument b . Similarly, an expres- 

slon ln terms Of &ssel functions may be obtained for ~~ by representing 
It as 
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dva 
II2 = 4v1- 8t -&- 

‘19 r,‘2is 

v1= s FI (‘/zo co9 cp) cos ‘P dg, 1’2 = 0 s FI (1:20 cos2cp)cos3~ dq 
0 0 

FI (z) = (225 + 2639 + 15x’) Jo (2) - (zj - 7023 + 2522) J1 (z) 

and lntcgratlng the expressions 1/, and y, , ,;ust as (2.8). 

F .3* 
kt us conduct an asymptctic analysis of (1.1s) for large values of' 

For this let us T&rite this expression as 

2:m 2 

d 
F=_ fk (r, 0)e 

iR”k(r, 
b 2ng2 

0) r dr de 

jk = (-1)” 
i v; (__I)“’ - 28+ 

____ e-2Er?L & (r, 6) 
2i v/p 

(3.1) 

M, = r cos (e - r) - F v r (-l)h‘, k = tR-1 

Using the known formula of the method of stationary phase for double 
inte&ralo [G], we obtain the followiF expression for the rise in fluid for 
large F for an arbltray initial rise: 

f(n, 01)exp (ig)] exp ( - g) 

v-a (r, Oh rl = E2 
4 ' %=n+r 

(3.2) 

Since the parameter 5 
small as compared with I) 

enters Into Expression ~,(r, 8) , it should be 
according to which the asymptotic estimate of 

the integral (3.1) will be'made. Hence, 
0 < t < T, 

the asymptotic formula (3.2) will 
be valid for where T is a quantity of the order of p_lRa . 
For an Initial rise of the form (2.1) concentrated in the neighborhood of 
the origin and having the volume Q , Expression (3.2) becomes 

c= ,G2Q 
4 T/>nR3 ( cos Rt2 + yRt3 sin _gtZ 

4R 4115 4R 1 

Let us note that the llmltlng value of (3.3) agrees, 
the expression for the wave shape which is the solution 
problem for an ideal fluid [5]. 

To obtain the 
us write (3.1) as 

asymptotic estimate of (3.1) for large 

2:ca 2 

(3.3) 

as v-0, with 
of the analogous 

values of t , let 

fk (r, 0) eitNk(” ‘) r dr df3 

N, (r, 0) = Elr cos (0 - r) - v/; (-l)k, El = Rt-1 

and, just as before, we obtain that (3.7) will be valid even for large values 
of t for 0 <R <R,, where ffl is a quantity of the order of t . 

4. The problem of waves caused by an initial disturbance of the free 
surface was considered In the previous sections. Let us now consider the 
problem of waves caused by an arbitrary pressure pulse applied to a free 
surface. 

During a very small time Interval 7 let an arbitrary pressure pulse be 
applied to the horizontal surface of a viscous fluid at rest, occupying the 
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half-space s < 0 . Then the projections of the velocities caused by this 
pressure pulse are defined by Formulas 

I,0 = - p-"DX, Dc = - p-VP,,, (4.1) 
0 

Since the 
P 
ressure pulse Is given only on the free surface then the func- 

tion @(x,bl,z will indeed be tiown only for z = 0 . Let. @L&O) = F(x,y). 
Since the fluid Is Incompressible, then A@ = 0 , and hence the function 

I”, 
K (m ( II) == z 

Sa F (z, y) exp [- i(mzf n(J)]dxdy 
--co 

satisfying the Laplace equation and the required condition at P = 0 , will 
be the desired function. Therefore, the Initial velocities caused by the 
pressure pulse j'(r,y) are now known in the whole fluid. Since the time 7 
Is infinitesimal, and the velocities are finite, we then neglect the dis- 
placement of the particles in the time 7 . Taking the instant the pulse 
ceases to act as the initial time, we arrive at the following problem: to 
find the solution of the system (1.1) with the initial conditions 
u= VO' w -w,t c where are given by (~.;)"&I~ 
t,;;e boundary Li ' at ~y-(~.~). Appl&&v?~e%place transform In the conditions 

and the Fourier transform In the variables x 
the bohdary conditions (1.5) 

and b/ to (1.6) and 
we obtain a system for the transforms if we 

take account of the initial ckdltlons 
U,, - (9 + avV1)U - imV_lY = - av-lU, 

Y zz - (9 + a+) V - inv-1Y = - av-lVB (4.2) 

wzz - (rs f av-l)W - v-lYz = - uv-We, i(G I- nV) + W, = 0 
Here the capital letters denote the transforms of the functlok denoted 

by the lower case letters above, for this 

UO=---imL, Vs=- iti, w0 = - rL, L 

the boundary conditions (1.5) In the transforms (for 

gz = Y - 2vwz, a2 =w, U, -I- imW = 0, 

= p-"K (m, n)e” 

2 - 0) become 

Y, -t- inW = 0 (4.3) 

Solving the system (4.2) with the boundary conditions (4.3) and then 
using the inversion formula, we find the expression for the rise in the fluid 

2x00 (4.4) 
65 

5=-- 2npgs [VI + e*% + eV& qj = 1 i K (r, 6) Xj (r, t, e) eiRrcos(e-yb dr d0 

0 0 

s+icc 

1 
x. = 2ni 

3 s 
cpj(ct, r) eatda (j = 1, 2, 3), 'pl = 2, ‘p2 = 2;) 93 = - $- 

s-i00 

The quantities A, AI% &at k are given by (1.13). Expression (4.4) is 
the exact solution of the formulated problem for the arbitrary function 
p(x,y) relative to which we shall assume that it admits of a Fourier trans- 
form In the variables x and y . By the same method as in Section 1, it 
may be shown that the expressions for na and n3 have a finite limit a8 
E - 0 under the same constraints on the function ~(x,y) as for C (x,,~) 
Hence, for cQ: 1 , 
order of safa as 

Expression (4.1) may be written with an error o?' the 

WC0 

r%K (r, 6) sin VYtexp [iRr cos(B-- r)-2&i+] dr dtl (4.5) 
00 
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Thus, to first degree of accuracy in inclusive 
the shape of waves resulting from the preisure pulse 

Formula (4.5) yields 
hder consideration. 

5. kt the function .&,v) be 

F &, g) = (R G 4 
(R>4 

(5.1) 

In this case x (i', 0) = %2k-2q (r), where Q(T) Is given by (2,2) and the 
integrals n. and n3 will conver e absolutely for u > 3.5 . 
aGCoW%t that the Integral In (4.5 ‘5 

Taking Into 
is the limit of the integral 

ZRoo 

ss 
r’/aK (r, 0) sin v;t exp [iRr CQS (0 - y) - 2Er2t + zrl &de 

0 0 

as a--O, let us write Expression for C as 
m 

6 
avIa% 

J-_ 

PPk s g, (r) JQ (rft) sin v;t exp [ iRr co5 (8 - r) - 2t?ret + zr] r”* dr d@ (5.2) 

9 

Let us note that the total magnitude of the pressure pulse p is calcu- 
lated by means of Formul.a Q = rta8n(~ -i- a)- 1. To simplify the subsequent cal- 
culations let us consider the limiting case a-, 0. n -+ 00 
tity p 

so that the quan- 
remains invariant, 

and Expression (5.2) becomes 
In this limiting case 9(r) equals [2(~ -I- i)l-l, 

al 

Expanding $(e) in a power series in" E and limiting ourselves to the 
first three terms of the series, we have 

lp(e)= 9 (0) + W(O) + W%" (0) -I- Rs 

g"(o)= (- 2t$ r’ftt2kJo (rR) sin v/;te” dr 

0 

Here R, is a quantdty of the order of c3 on the basis of the formula for 
the remainder term of the Taylor series. Expanding sin /Fr, in series and 
taking account of (Z?.5), we find the following expression for the rise < : 

&!ta 
O7=2R’ 6, = 

[(Zk -+ l)!!]fd22k 6& = 6kO (2k + 3Y 
(4k + I)! ’ 6,, = 6,, (2k -!- 5)’ (i=l, 2, 3) 

Here t and I) are the initial dimensional variables. The expression 
for v = 0 agrees with the expression for the rise in fluid obtained in 
solving the analogous problem for an Ideal fluid [3]. The obtained series 
will. converge for any values of w but they are convenient for calculations 
only for small u1 . Kochln C33 found an expression for the series FI, in 
terms of Bessel functions which is convenient for calculations for any U! 
This expression is 

HO - $ 12Ja,,J_~,,=- 30 (Ja,;Jl,, - J+J_,,,l - ~2 (J,,,J_,,, + JL,,J_a,,)l 

where al.2 the functZons have the same argument ?a . Let us now find an 
expression for the series H, In terms of Eessel functions. This series may 
be represented by ','*X 

Zfl = 1 ~(~~2~cos~~)cos~~~ (5.Q 

0 

p (s) = 2 I(%-$722 + z*) Jo (z) + (-12~ + 6x3) JI (@I 
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Using (2.91, we find the following expresslon for the integral (5.4) in 
terms of Bessel functions: 

H1 = 11% v Zn [I/& (Ja,,J+ + ‘laJ,,,J_~,) + %d (J1,,Jv, - J-l/,J-?:> - 
- ‘/64ti= (335J,,,J_,,, + 741 J J ‘1, -‘ir ) + 4’/6ao (Ja,n,Jx/, - J_,,,J_I,) - 

- s/go (JOJ, -J-T,., + ~%J_,,,JJ,,, - ~JI,;J+I 
BY a similar method we may obtain an expression for the series ~~ In 

terms of Bessel functions by representing It as 
'ltn 

Hz = 
s 
Fl (l/20 cos2 cp) cos cp dq (5.5) 

0 

FI (z) = 2 [ (- I” + 96z4 - 568~2 + 225) Jo (2) + (-15~5 + 223x3 + 195x) JI (r)] 

and then Integrating (5.5) analogously to (5.4). 

6. Let us carry out an asymptotic analysis of (4.5) for large R . 

Let US write this expression as 
zxco a 

5 = x& i 1 2 fk(r, 0) exp IiRMk(r, 011 drde 
o o k=l 

(6.1) 

fk (r, 0) = r+K(r, 0) exp (--2er*C) (-1)’ 

Here ~,(r,e) Is given by (3.1). For large R we obtain the following 
asymptotic expression for the rise in fluid due to an arbitrary Initial 
pulse: 

5 (6.2) 

f(r, e)=+isK(r, O), rl-%t? h=J’C+‘Y* 

Formula (6.2) will be valid for 0 f t < T, where T is a quantity of 
the order of ~-lR~ . The quantities /) and t In (6.2) are dimensional. 
For an initial pulse of the form (5.1) concentrated In the neighborhood of 
the origin, whose total value Is g , Expression (6.2) becomes 

&-=- qkP 
8 Jf%qm 

singexp (- s) (6.3) 

Exactly as has been shown In Section 3, we obtain that (6.2) will be valid 
for large values of t for 0 \<R <RI, where 
of t . 

R, is a quantity of the order 

The obtained Formulas (6.2) and (6.3) afford a posbt_blllty of constructing 
a pattern of the free surface motion by elementary means at some distance 
from the domain of application of the pressure pulse in the mentioned time 
range, and also an analogous pattern for large values of time t In the 
mentioned range of variation of R . 
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